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Abstract
We consider the case where the inflaton is non-singlet in a supergravity framework. The η-problem is
avoided by defining a shift symmetry on the charged inflaton fields in a consistent way with the gauge
symmetry. We review two scenarios, one of them depends on a U(1) gauge symmetry group and the other
depends on flipped GUT gauge symmetry.
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1. INTRODUCTION
Inflation paradigm is the most acceptable framework that provides a solution to the problems associated with the original Big
Bang model, such as flatness, horizon, and monopole problems. On the other hand supersymmetry is a good candidate for physics
beyond the standard model of elementary particle physics that has good candidates for the inflaton fields. In such a high scale of
inflation physics, supergravity corrections should be taken in to account.

However in a supergravity framework, a problem arises, called the η−problem, due to contributions to the inflaton mass of
order of Hubble scale. Defining a shift symmetry can overcome such a problem in supergravity. On the other hand, requiring that
the inflaton is charged under a gauge group ivites us to define the shift symmetry in a consistent way as will be advocated in two
prominent examples below.

The paper is organized as follows. In section 2 we present a model with a U(1) charged inflaton and describe the inflation
observables. In section 3 we show that a charged inflaton can be embedded in a flipped GUT (FGUT) scenario, then display the
observables in different cases of the waterfall regime. Finally we discuss the reheating in both cases.

2. U(1) CHARGED INFLATON IN SUPERGAVITY
In this section we discuss the possibility if realizing the infation scenario in the direction of a pair of superfields that are U(1) oppo-
sitely charged. Let’s begin with the most general superpotential that is renormalizable and consistent with R-symmetry, containing
two superfields φ1 and φ2 carrying opposite charges under a U(1) gauge symmetry, and a singlet S [2]

W = λS(φ1φ2 + M2), (1)

In that case one should impose a shift symmetry [7, 8, 9] on the fields φ1 and φ2, in a consistent way to avoid the troublesome
η-problem appearing in supergravity models of inflation. Hence, the Kähler potential will have the form [2]

K = |φ1 + φ2|2 + |S|2 − ζ|S|4, (2)

Here, ζ plays important role in determining the inflaton multiplet, S or φ1,2. If ζ is negative, one has a scenario similar to [5] where
the supergravity corrections are taken into account in the hybrid inflation scenario of Ref. [4]. In that case, the inflaton comes from
the S multiplet while the fields φ1,2 will play the role of the waterfall fields and will be frozen at the origin during the inflation. It is
worth mentioning that the R-symmetry protects the inflaton mass against large supergravity corrections in such scenario. Hence,
the η-problem is absent. This case is a small-field inflation and here M is of order GUT scale.

On the other hand, considering ζ to take positive values is more motivated if one interprets the quartic term of S in the Kähler
as loop corrections [6]. In that scenario, the inflaton comes from the φ1,2 whereas S represents the stabilizer field [10, 11].

2.1. Non-anomalous U(1) case
In a non-anomalous U(1) symmetry, the F-term and D-term scalar potentials are given by

VF = eK
[
KI J̄ DIWD J̄W − 3|W|2

]
, (3)

VD =
g2

2

(
|φ1|2 − |φ2|2

)2
, (4)
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where I, J run over the superfields {S, φ1, φ2} and DIW = ∂IW + W∂IK. Here, we work in units where the reduced Planck mass
Mp = 1. Using the following parametrizations for the complex fields,

S ≡ s + iσ,

φ1 + φ̄2 ≡ α + iβ

φ1 − φ̄2 ≡ ρ eiθ/2M . (5)

Hence the SUSY minimum of the potential is given by

〈s〉 = 〈σ〉 = 〈α〉 = 〈β〉 = 0 and 〈ρ〉 = 2M . (6)

It is clear that the Kähler potential (2) doesn’t depend on the fields ρ and θ. However, θ is massless in the vacuum and is correspond-
ing to unphysical degree of freedom.1 In that case the slow rolling inflaton will be the field ρ, whereas the other real components
are fixed at zero during the inflation. Accordingly, the effective inflationary potential is given by

Vinf(ρ) =
λ2

16

(
ρ2 − 4M2

)2
. (7)

This potential has been studied in details in [13, 10, 12]. If M has values M < 1, then the potential is mainly governed by the quartic
term which is excluded by WMAP and Planck observations. On The other hand, for M � 1, we have two possible regimes for
inflation.
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FIGURE 1: The ns − r observables of the inflationay potential Eq.(7), where we have sanned over the parameter M from 4− 200Mp . The large points correspond to
60 e-folds while the smaller points correspond to 50 e-folds. The black ones correspond to the observables of m2φ2/2 chotic inflation. Light red regions correspond to
the 1 and 2 sigma exclusion limits released by the Planck collaboration [1], (Planck TT + LowP).

Fig. 1 shows the inflationary observables: the spectral index ns versus the tensor to scalar ratio r. The two black points corre-
spond to the chaotic inflation V = m2φ2/2, observables. The points above and below the black points correspond to two different
inflationary regimes of the potential (7). Points below the black one correspond to the regime when the inflaton rolls from initial
values less than 2M. While the above ones, correspond to the regime when the inflaton rolls from initial values larger than 2M.

2.2. Anomalous U(1) case
Fayet Illiopoulos (FI) term can exist in case we have anomalous U(1). The D-term potential will be modified as follows

VD =
g2

2

(
|φ1|2 − |φ2|2 + ξ

)2
, (8)

and the SUSY minimum turns out to be

|φ1,2|2 =
∓ξ +

√
ξ2 + 4M4

2
, (9)

with the fields s and σ remain stabilized at zero. Working in the basis

φ1 ± φ̄2 ≡ α± + iβ± , (10)

1It is the Nambu Goldstone boson arising after spontaneous breaking of the U(1) gauge symmetry.
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we find that the inflaton will correspond to α− and other spectator fields will be frozen during the inflation to [2]

〈s〉in f = 0 ,

〈σ〉in f = 0 ,

〈β+〉in f ' 0 ,

〈α+〉in f ' − 8g2ξα−
8g2α−2 + λ2α−4 − 2λ2α−2 + 16λ2 M4 − 8λ2 M2α−2 + 8λ2 M2 , (11)

while β− will represent the main component of the unphysical goldstone boson. Here we use the assumption that ξ < Mp � 2M.
In this case, the effective inflation potential is given by

Vin f (α−) =
1
16

(
8g2 (ξ − α−A)2 + λ2eA2

((
A2 − α−2

)
+ 4M2

)2
)

,

A(α−) ≡ 8g2ξα−
α−2 (8g2 + λ2 (α−2 − 2)) + 16λ2 M4 − 8λ2 M2 (α−2 − 1)

. (12)

This potential gives the same observables as in the case without FI term in the regime ξ < Mp � M [2].

3. CHARGED INFLATON UNDER FLIPPED GUT GAUGE GROUP
In this scenario [3], we study the case when the inflaton is charged under a non-semisimple symmetry groups having the form
G ×U(1)X . It was shown in [14] that such structure is free from producing monopoles when the symmetry is broken at GUT. In
this respect, we focus on non-semisimple groups as the unification symmetry, realizing such symmety in two pominent examples:
the flipped SU(5) group, SU(5)×U(1) and the flipped SO(10) group, SO(10)×U(1) as they preserve the chial structure of the
SM. In this case he inflaton will correspond to the righ-handed sneutrino. Again, in order to desribe the model in a suprgravity
framework we need to introduce a shift symmetry in a consistent way with the gauge symmetry.

In this case, the QX charges are assigned such that the SM hypercharge is given by

Y = 1
5 (QX −QY′ ) , SU(5) ×U(1)X ,

Y = 1
20 (5QX −QZ − 4QY′ ) , SO(10)×U(1)X ,

(1)

where QY′ is the charge associated with the first abelian factor of the broken U(1)Y′ ×U(1)X , subalgebra of SU(5)×U(1)X and,
QZ is the charge associated with the subalgebra U(1)Y′ ×U(1)Z ×U(1)X of SO(10)×U(1)X .

Here we will concentrate on the flipped SU(5) group and hence we list the field representations, as well as their charge assign-
ment [3]:

• The standard model (SM) matter content is contained in representations 10F, 5̄F and 1F, whose respective U(1)X charges are
1, -3 and 5.

• The Brout-Englert-Higgs bosons enacting electroweak symmetry breaking are contained in 5Hu and 5̄Hd .

• The model is complimented with a singlet 1S, necessary to provide the mixing 5Hu 5̄Hd required for electroweak symmetry
breaking.

• The heavy scalars Σ and Σ̄, triggering the breaking of the flipped SU(5) to the standard model gauge group are contained in
representations 10H and 10H .

• An additional superfield, in the conjugate representation of the 10-dimensional matter multiplet 10F with U(1)X charge -1,
is added to allow the introduction of a shift symmetry in the Kähler potential, which will be described below.

With these field representations, and taking canonic hypercharge normalization through eq. 1, the generator QY′ can be written
as

QY′ =
1
6

diag (−2,−2,−2, 3, 3) , (2)

In addition to this field content, we add Z2 matter parity in order to forbid undesirable RP-violating couplings [15]. The U(1)X
and Z2 charges of all the involved fields, can be seen in Table 3.

5Hu 5̄Hd 5̄F 10H 10H 10F 10F 1F 1S
U(1)X +2 -2 -3 1 -1 1 -1 5 0

Z2 + + - + + - - - +

Here we will focus on the interesting case where the inflaton correspnds to the right-handed sneutrino, Nc (N̄c), embedded in
the representation 10F (10F).
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3.1. The inflationary Model
The relevant part of superpotential that is responsible for the inflation scenario is given by [3]

W ⊃ S(λφ φ1φ2 + λh h1h2 −M2) + µφφ1φ2 , (3)

While the shift symmetric Kähler potential is given by [3]

K = |φ1 + φ̄2|2 + |h1|2 + |h2|2 + |S|2 − η|S|4 , (4)

where φ1(2) ≡
(−)
Nc (contain the inflaton component), h1(2) are the SM singlet component of Σ (Σ̄), (correspond to the waterfall fields)

and S is the stabilizer superfield which is gauge singlet. Accordingly, the supersymmetric vacuum is given by

φ1 = φ2 = S = 0 and h1h2 =
M2

λh
. (5)

Therefore the the gauge group SU(5)×U(1) will be broken at the vacuum and we have M2

λh
= M2

GUT . We perform the following
field redefinitions

φ1 + φ̄2 = α1 + iβ1 , φ1 − φ̄2 = α2 + iβ2 , (6)

S =
s + iσ√

2
, h1,2 =

H ± h√
2

, (7)

and finally

h =
hr + ihi√

2
, H = ρ exp

(
i√
2

θ

MGUT

)
. (8)

It is clear that θ is the unphysical Goldstone boson and will not contribute to the inflation dynamics. The other spectator fields will
be frozen during the inflation as follows

〈σ〉 = 〈α1〉 = 〈β1〉 = 〈hr〉 = 〈hi〉 = 0 , and 〈s〉 '
√

2 λφ µφ

2ηλ2
φ − µ2

φ

. (9)

The waterfall will happen when the field dependent mass squared of the ρ field becomes negative, Assuming that µφ � λφ, M,

and λh =
(

M
MGUT

)2
� M2, the mass squared of ρ will be given by

m2
ρ ≈

λ2
φ

8

(
α2

2 + β2
2

)2
− λφλh

2

(
α2

2 + β2
2

)
. (10)

While the inflaton rolls down to smaller values, m2
ρ becomes negative at the critical value

φ2
c ≡

(
α2

2 + β2
2

)
c
≈ 4λh

λφ
. (11)

In [3], it was emphasised that two inflationary regimes can be considered:

• Small critical value: φc < 1Mp

In this case the FGUT gauge group is broken at the end of inflation and accordingly the effective inflaton potential is given
by

V(α2, β2) =
1

16

(
α2

2 + β2
2

) [
(α2

2 + β2
2)
(

λ2
φ − 3µ2

φ

)
+ 8(µ2

φ + λφ M2)
]

. (12)

Due to the rotational symmetry in the plane of α2 and β2, the potential can be simplified to the following form

V(Φ) =
1

16
Φ2
[
Φ2
(

λ2
φ − 3µ2

φ

)
+ 8(µ2

φ + λφ M2)
]

, (13)

with Φ =
√

α2
2 + β2

2.
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• High critical value: φc > 20Mp

In this case, the field ρ acquires a non-zero vev (an inflaton dependent vev during inflation). This causes a back reaction to
the inflation potential but still almost quadratic

V(Φ) =
1

16eη3λφ
Φ2

[
8η3λφµφ

2 + 12η3λhµφ
2 + η2λφΦ2

(
η
(

λφ
2 − 3µφ

2
)
− µφ

2
)

(14)

+ 12η2λφµφ
2 + 6η2λφµφ

2 + 6ηλφµφ
2 + λφµφ

2 + 2ηM2
(

4η2λφ
2 + 2ηµφ

2 + µφ
2
) ]

.

One can define a relation between µ2
φ and λ2

φ in order to see what tuning we need to cancel the effect of the quartic term, as follows

λ2
φ = (1 + ε)3µ2

φ , |ε| � 1 . (15)

Figure 2 shows the inflation observables ns and r where a scan over the parameters µφ = [1010, 1012] GeV and |ε| < 1 is performed
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FIGURE 2: Inflation observables for two scenarios where the inflaton field critical values are either small (φc = 1Mp , left panel) or large (φc = 30Mp , right panel).
From Ref. [3].

for the two scenarios of small and large values of φc. It turns out that the first scenario need a tuning in the value of ε to have
observables in the 2σ region.

4. REHEATING
The reheating scenario may be one of the interesting feature of such models of inflation. The inflaton rolls down to its minimum
then oscillates and decay to the SM particles reheating the universe. In the U(1) charged scenario [2], it was assumed that the
inflaton can couple to the right-handed neutrinos by allowing the gauge kinetic mixing between the above inflationary U(1) and
the U(1)B−L. In this case, the U(1)B−L should be broken at scales ∼ 1013 GeV (of the same order of the inflaton mass). This is
important to have neutrino masses consistent with the observations from one hand and on the other hand to obtain reheating
temperature TR ∼ 109 GeV, consistent with the cosmological constraints [16, 17, 18, 19, 20].

However, in the FGUT scenario [3], it is natural to find couplings between the inflaton and the SM particles from the invariant
superpotential under SU(5)×U(1) as follows

WSU(5) = Yu 5̄Huα 10αβ
F 5̄Fβ + Yd1 εαβγδλ 10αβ

F 10γδ
F 5λ

Hd

+ Yd2 εαβγδλ 1̄0Fαβ 1̄0Fγδ 5̄Huλ + Ye 5λ
Hd

5̄Fλ 1F , (1)

where the indices α, β, ... = 1, . . . , 5. Accordingly, the interaction Lagrangian between the inflaton and the lighter fields of the
MSSM can be extracted from the above superpotential as

Lint = −Y Ñc
(

νL H̃0
u + eL H̃+

u

)
. (2)

The reheating temperature can be calculated using the expression

TR ≈
(8π)1/4

7
(
Γ Mp

)1/2 , (3)
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FIGURE 3: Reheating temperature TR versus the Yukawa coupling Y for different values of the inflaton mass parameter µφ = 1010, 1011, 1012 GeV, from Ref. [3].

with the total decay width of the inflaton Γ is given by

Γ = Γν̃R→νL H̃0
u
+ Γν̃R→eL H̃+

u
, (4)

and Mp is the reduced Planck mass. In this respect, the decay of the sneutrino to massless fermions is given by

Γν̃R =
|Y|2µφ

8π
. (5)

The relation between the reheating temperature and the Yukawa coupling with varying the mass of the inflaton are depicted in Fig.
3. The values of Yukawa couplings the gives consistent reheating temperature are in the range of up-quark coupling value. This
indicates that the inflaton comes from the first generation.

5. CONCLUSIONS
In this paper we reviewed a single field inflation scenario within supergravity with shift symmetry where the inflaton is charged
under a gauge group. In the case of anomalous and non-anomalous U(1), the effective inflation potential was the same as new
inflation potential. In the case of FGUT scenario, the effective inflation potential is dominantly quadratic if the coefficient of the
quartic term is suppressed. This requires a fine-tuning in the first case where the critical value of the inflaton is small, while the the
second case of large critical values is much less tuned. The reheating after inflation due to the decay of the inflaton is analysed in
both cases. While it was assumed that the kinetic mixing between our U(1) and U(1)B−L generates couplings between the inflaton
and right-handed (s)neutrinos in the first scenario, the second scenario of FGUT gauge symmetry provides natural couplings of
the inflaton (the right-handed sneutrino) to the MSSM paricles directly that allows decay channels of the inflaton.
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